Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Oxid Med Cell Longev ; 2022: 3012778, 2022.
Article in English | MEDLINE | ID: covidwho-2020490

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a human coronavirus (HCoV) that has created a pandemic situation worldwide as COVID-19. This virus can invade human cells via angiotensin-converting enzyme 2 (ACE2) receptor-based mechanisms, affecting the human respiratory tract. However, several reports of neurological symptoms suggest a neuroinvasive development of coronavirus. SARS-CoV-2 can damage the brain via several routes, along with direct neural cell infection with the coronavirus. The chronic inflammatory reactions surge the brain with proinflammatory elements, damaging the neural cells, causing brain ischemia associated with other health issues. SARS-CoV-2 exhibited neuropsychiatric and neurological manifestations, including cognitive impairment, depression, dizziness, delirium, and disturbed sleep. These symptoms show nervous tissue damage that enhances the occurrence of neurodegenerative disorders and aids dementia. SARS-CoV-2 has been seen in brain necropsy and isolated from the cerebrospinal fluid of COVID-19 patients. The associated inflammatory reaction in some COVID-19 patients has increased proinflammatory cytokines, which have been investigated as a prognostic factor. Therefore, the immunogenic changes observed in Parkinson's and Alzheimer's patients include their pathogenetic role. Inflammatory events have been an important pathophysiological feature of neurodegenerative diseases (NDs) such as Parkinson's and Alzheimer's. The neuroinflammation observed in AD has exacerbated the Aß burden and tau hyperphosphorylation. The resident microglia and other immune cells are responsible for the enhanced burden of Aß and subsequently mediate tau phosphorylation and ultimately disease progression. Similarly, neuroinflammation also plays a key role in the progression of PD. Several studies have demonstrated an interplay between neuroinflammation and pathogenic mechanisms of PD. The dynamic proinflammation stage guides the accumulation of α-synuclein and neurodegenerative progression. Besides, few viruses may have a role as stimulators and generate a cross-autoimmune response for α-synuclein. Hence, neurological complications in patients suffering from COVID-19 cannot be ruled out. In this review article, our primary focus is on discussing the neuroinvasive effect of the SARS-CoV-2 virus, its impact on the blood-brain barrier, and ultimately its impact on the people affected with neurodegenerative disorders such as Parkinson's and Alzheimer's.


Subject(s)
Alzheimer Disease , COVID-19 , Parkinson Disease , Alzheimer Disease/complications , COVID-19/complications , Humans , Parkinson Disease/complications , Peptidyl-Dipeptidase A , SARS-CoV-2 , alpha-Synuclein
2.
J Chem Neuroanat ; 110: 101874, 2020 12.
Article in English | MEDLINE | ID: covidwho-880525

ABSTRACT

COVID-19 has forsaken the world because of extremely high infection rates and high mortality rates. At present we have neither medicine nor vaccine to prevent this pandemic. Lockdowns, curfews, isolations, quarantines, and social distancing are the only ways to mitigate their infection. This is badly affecting the mental health of people. Hence, there is an urgent need to address this issue. Coronavirus disease 2019 (COVID-19) is caused by a novel Betacorona virus named SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) which has emerged in the city of Wuhan in China and declared a pandemic by WHO since it affected almost all the countries the world, infected 24,182,030 people and caused 825,798 death as per data are compiled from John Hopkins University (JHU). The genome of SARS-CoV-2 has a single-stranded positive (+) sense RNA of ∼30 kb nucleotides. Phylogenetic analysis reveals that SARS-CoV-2 shares the highest nucleotide sequence similarity (∼79 %) with SARS-CoV. Envelope and nucleocapsids are two evolutionary conserved regions of SARS-CoV-2 having a sequence identity of about 96 % and 89.6 %, respectively as compared to SARS-CoV. The characterization of SARS-CoV-2 is based on polymerase chain reaction (PCR) and metagenomic next-generation sequencing. Transmission of this virus in the human occurs through the respiratory tract and decreases the respiration efficiency of lungs. Humans are generally susceptible to SARS-CoV-2 with an incubation period of 2-14 days. The virus first infects the lower airway and bind with angiotensin-converting enzyme 2 (ACE2) of alveolar epithelial cells. Due to the unavailability of drugs or vaccines, it is very urgent to design potential vaccines or drugs for COVID-19. Reverse vaccinology and immunoinformatic play an important role in designing potential vaccines against SARS-CoV-2. The suitable vaccine selects for SARS-CoV-2 based on binding energy between the target protein and the designed vaccine. The stability and activity of the designed vaccine can be estimated by using molecular docking and dynamic simulation approaches. This review mainly focused on the brief up to date information about COVID-19, molecular characterization, pathogen-host interaction pathways involved during COVID-19 infection. It also covers potential vaccine design against COVID-19 by using various computational approaches. SARS-CoV-2 enters brain tissue through the different pathway and harm human's brain and causes severe neurological disruption.


Subject(s)
COVID-19 Vaccines/chemistry , COVID-19 Vaccines/immunology , Host-Pathogen Interactions/immunology , SARS-CoV-2/immunology , Computer Simulation , Drug Design , Humans , Molecular Docking Simulation
SELECTION OF CITATIONS
SEARCH DETAIL